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Maximizing Land Cover Classification
Accuracies Produced by Decision

Trees at Continental to Global Scales
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Abstract—Classification of land cover from remotely sensed
data at continental to global scales requires sophisticated al-
gorithms and feature selection techniques to optimize classifier
performance. We examine methods to maximize classification
accuracies using decision trees to map land cover from multi-
temporal AVHRR imagery at continental and global scales. As
part of our analysis we test the utility of “boosting,” a new tech-
nique developed to increase classification accuracy by forcing the
learning (classification) algorithm to concentrate on those training
observations that are most difficult to classify. Our results show
that boosting consistently reduces misclassification rates by�
20–50% depending on the data set in question, and that most of
the benefit gained by boosting is achieved after seven boosting
iterations. We also assess the utility of including phenological
metrics and geographic position as additional features to the
classification algorithm. We find that using derived phenological
metrics produces little improvement in classification accuracy
relative to using an annual time series of NDVI data, but that
geographic position provides substantial power for predicting
land cover types at continental and global scales. However, in
order to avoid generating spurious classification accuracies using
geographic position, training data must be distributed evenly in
geographic space.

Index Terms—Classification, decision trees, land cover.

I. INTRODUCTION

REMOTE sensing studies of the Earth’s terrestrial ecosys-
tems have witnessed a significant expansion of analysis

scale over the past fifteen years [2], [7], [14], [24]. This
shift reflects the increased level of interest in global change
processes and has prompted new questions and technical issues
associated with processing coarse resolution multitemporal
data. With the imminent launch of the AM platform of
the Earth Observing System (EOS), the need for improved
algorithms to process global scale data sets is even more
pressing. In this paper, we examine issues associated with
supervised classification of coarse spatial resolution data for
land cover mapping applications. The motivation for this
work is driven by the requirements of global land cover
mapping algorithms being developed for use with data from
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the Moderate Resolution Imaging Spectroradiometer (MODIS)
[27].

The specific objectives of this work are to evaluate two
strategies designed to maximize land cover classification ac-
curacies derived from supervised classification algorithms. The
first strategy is a new technique known as “boosting” that has
recently been developed in the field of machine learning [5].
The second strategy is to supplement time series normalized
difference vegetation index (NDVI) measurements with other
input features including geographic position and phenological
metrics designed to capture dynamics in vegetation.

To assess the utility of these methods, we performed a set of
analyses using decision trees to classify two data sets of com-
posited NDVI data. Our results show that boosting is effective
for land cover classification problems, but that phenological
metrics do not significantly improve classification accuracies
relative to classifications based upon a complete twelve month
cycle of NDVI measurements. Further we find that while geo-
graphic position provides a useful predictor that complements
remotely sensed input features, representative training data
must be included from each region to be classified in order
to avoid spurious results from cross validated estimates of
classification accuracy derived from random splits of training
and testing data.

II. SUPERVISED CLASSIFICATION AT

CONTINENTAL TO GLOBAL SCALES

Virtually all remote sensing studies of land cover and land
cover change at continental to global scales have used data
from the advanced very high resolution radiometer (AVHRR)
on board the NOAA series of meteorological satellites. This
instrument provides measurements at sufficiently coarse spatial
resolution (1.1 km at nadir) to allow processing and analysis at
continental scales. At the same time, relative to higher spectral
resolution sensors such as the Landsat Thematic Mapper,
the spectral information content provided by the AVHRR is
substantially less useful for land cover classification problems.

To compensate for the lower spectral resolution of AVHRR
data, the temporal domain has been widely exploited using
maximum value NDVI composite data with compositing pe-
riods ranging from ten days to one month [10]. Using time
series of composited NDVI data, numerous researchers have
explored large scale patterns in vegetation, and by extension,
land cover type (e.g., [15]). These studies have demonstrated
that a wealth of information related to vegetation phenology at
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Fig. 1. IGBP class means for the first two principal components estimated
from 12 months of 1 km NDVI data over North America� 1 standard
deviation. The numbers on the plot refer to IGBP class values (see Table I).

continental scales can be extracted from time series of AVHRR
NDVI measurements [11], [12], [15], [29].

Despite substantial success in extracting information related
to vegetation phenology from multitemporal AVHRR data,
efforts to map land cover using automated classification algo-
rithms have proven to be more difficult [3]. In particular, the
use of supervised classification algorithms in association with
multitemporal AVHRR data is fraught with problems related
to the separability of classes in spectral-temporal space at
continental scales, and the lack of generality in spectral classes
derived from training data extracted from a limited number of
training sites distributed over continental scales.

To illustrate, Fig. 1 plots class means one standard
deviation computed from the first two principal components
(representing about 91% of the total variance) of a twelve
month time series of 1 km NDVI data from AVHRR over
North America. Each number in the figure corresponds to
the mean value in each principal component for one of the
seventeen classes in the global land cover classification system
defined by the International Geosphere-Biosphere Program
(IGBP) [14] (see Table I for the class name corresponding
to each number). This plot illustrates that substantial overlap
exists in the spectral-temporal space of the different IGBP
classes (e.g., classes 1, 10, 12–14). Given this overlap, a central
issue confronting land cover mapping activities planned under
EOS is how to optimize supervised classification algorithms
such that these classes can be accurately discriminated and
mapped in an efficient and repeatable fashion at continental
and global scales.

It is important to note that the strategy being developed
to map land cover using EOS data employs a supervised
classification model [27]. The choice of a supervised approach
is based on the need for automated and repeatable algorithms
in order to produce quarterly land cover maps in a timely fash-
ion. While previous studies using AVHRR data in association
with supervised classification techniques have proven to be
moderately successful in this regard, the improved spectral
resolution and radiometric quality of MODIS will provide
superior spectral information to complement the temporal
information currently being exploited in AVHRR data. At
the same time, problems associated with signature extension
may substantially complicate the use of supervised classifi-

TABLE I
NDVI 1 km NORTH AMERICA LAND COVER CLASSES

(N = NUMBER OF SAMPLES IN EACH CLASS)

cation algorithms planned as part of EOS using MODIS data.
Within this framework, improved classification algorithms that
are robust with respect to noise in training data, improved
understanding of the best features available to discriminate
among land cover classes, and the development of methods
to minimize problems caused by confusion among spectral
classes will maximize the quality of land cover maps produced
from MODIS data using supervised classification algorithms.
In the sections below, we consider these questions using two
AVHRR data sets:

1) 1 km spatial resolution for North America;
2) 1 spatial resolution that includes all land masses on the

Earth’s surface.

III. D ECISION TREES AND BOOSTING—BASIC THEORY

Recent work has demonstrated that decision trees provide an
accurate and efficient methodology for land cover classification
problems in remote sensing [6], [9], [28]. At global scales,
decision trees have recently been used to map land cover
using the 8 km AVHRR pathfinder data set with encouraging
success [3]. Among the advantages of decision trees that are
particularly useful for remote sensing problems are their ability
to handle noisy and missing data [22], [25]. Further, they
require no assumptions regarding the distribution of input data
and also provide an intuitive classification structure.

A. Estimating Decision Trees from Training Data

For this work, we use C5.0, a univariate decision tree algo-
rithm that is the commercial successor of C4.5, a widely used
and tested classification algorithm. A complete description of
this algorithm is beyond the scope of this paper, and the reader
is referred to [22] for complete details. Here we summarize
the key components of this algorithm as described in [22],
focusing particular attention to those aspects that pertain to
estimation of splitting rules and feature selection.

The most important element of a decision tree estimation
algorithm is the method used to estimate splits at each internal
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node of the tree. To do this, C5.0 uses a metric called
the information gain ratio, which measures the reduction in
entropy in the data produced by a split. Using this metric, the
test at each node within a tree is selected using the subdivision
of the data that maximizes the reduction in entropy of the
descendant nodes. Given a training data setcomposed of
observations belonging to one of classes
we desire a test that partitions into mutually exclusive
subsets If we define to be equal
to the number of cases in belonging to class and
to be equal to the total number of observations in then
the amount of information required to identify the class for an
observation in may be quantified as

(1)

Given a test, that partitions into outcomes
a similar measure may be defined

that quantifies the total information content after applying

(2)

Using this approach, we can measure the information gained
by splitting using as

(3)

The so-called “gain criteria” selects the test for which gain
is maximum. Unfortunately, gain tends to favor tests with
large numbers of splits. To compensate for this effect, gain
is normalized by

(4)

obtaining the splitting metric

(5)

Using this framework, is recursively split such that the gain
ratio is maximized at each node of the tree. This procedure
continues until each leaf node contains only observations from
a single class or no gain in information is yielded by further
splitting.

The result from this procedure is often a very large and
complex tree that may be overfit to noise in the training data. If
the training data contain errors, then overfitting the tree to the
data in this manner can lead to poor performance on unseen
cases. To minimize this problem, the original tree must be
pruned to reduce classification errors when data outside of the
training set are to be classified. To address this problem C5.0
uses error-based pruning. For details, the reader is referred to
[18], [21], [22].

B. Boosting

As part of our analysis using decision trees, we test a new
technique known as boosting that has recently been developed
in the machine learning research community. The goal of
boosting is to improve the classification accuracy of a given
base or “weak” learning algorithm (i.e., one that provides
less than acceptable classification accuracies) [26]. To do
this, boosting algorithms estimate multiple classifications in
an iterative fashion using the base classification algorithm
(in this case C5.0). At each iteration, a weight is assigned
to each training observation. Those observations that were
misclassified in the previous iteration are assigned a heavier
weight in the next iteration, thereby forcing the classification
algorithm to concentrate on those observations that are more
difficult to classify. Each iteration therefore produces a new
classification tree, with the intent of correcting misclassifica-
tion errors committed in the previous iteration.

The boosting algorithm implemented in C5.0 is based upon
AdaBoost.M1 [23], [5]. Following [23], is defined to be
the weight assigned to observation at trial For
1, for all where is the total number of
observations in the training set. At each iteration, a classifier

is constructed using the assumption that for each
reflects the probability of occurrence for An error term,
is calculated as the sum of the weights of the misclassified ob-
servations at each iteration. The system terminates if
or if 0 (i.e., if 50% of the observations are misclassified
or if classifies all instances correctly). At each iteration, for
each observation that correctly classifies a new weight is
estimated as

(6)

Conversely, if the observation was not correctly classified,
is unchanged. Note that at each iteration, is normalized
such that 1.

The result of this procedure is that a new tree with different
errors is estimated at each step. The final, boosted classifier
is then estimated by voting, where the vote for classifier
is worth log units, where Studies
conducted by machine learning researchers using a variety of
nonremote sensing data sets have shown that boosting tends to
reduce misclassification error rates by about 25% on average,
and that the improvement in classification accuracy tends to
stabilize by about ten iterations [23].

IV. M ETHODS

A. Analysis

The analyses performed for this work examine questions
related to feature selection and the utility of boosting for
land cover classification from remotely sensed data. Previous
research has explored the utility of phenological metrics by
examining the separability of classes in feature space using
global data at 1 spatial resolution in association with maxi-
mum likelihood classification techniques [2]. More recently,
phenological metrics have been tested in association with
decision trees using the 8 km AVHRR pathfinder data set [3].
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Here we consider similar questions using C5.0. We perform
this analysis using the same data as that used in [2], and also
using data at 1 km spatial resolution over North America.
Phenological metrics considered include the annual minimum,
maximum, amplitude, and mean of monthly NDVI values. For
the 1 data, geographic position is encoded in coordinates
of latitude (0–180, with the South Pole as 0) and longitude
(0–360 ). For the 1 km data, geographic position is encoded
using row and sample coordinates from images geo-rectified
to a Lambert Azimuthal equal area projection. The inclusion
of geographic position is based on the hypothesis that because
large scale climate patterns exert strong control on the geo-
graphic distribution of vegetation biomes, geographic position
serves as a good predictor of land cover and vegetation class at
continental to global scales. As part of this analysis we assess
the utility of boosting by comparing cross validated classi-
fication results derived from a single (unboosted) decision
tree to those produced by boosted decision tree classifications
estimated from the same training data.

B. Data

The paucity of high quality training data available for
training and testing of classification algorithms at continental
scales has precluded previous detailed studies of this nature
and remains a limiting consideration. For this work, we have
used two data sets. First, we used the North America IGBP
classification map and associated twelve month time series of
AVHRR NDVI data produced by EROS Data Center (EDC)
[14]. These data provide IGBP land cover labels at 1 km
spatial resolution for the entire North American Continent.
It is important to note that although finite levels of labeling
error are present, the map does represent the best of its kind
for North America. It was generated by manual procedures
involving unsupervised clustering of maximum value NDVI
observations composited over North America at monthly time
steps for the period from April of 1992 to March of 1993.
Land cover labels were assigned to each 1 km pixel by
manual splitting and labeling of NDVI clusters using extensive
ancillary data related to soils, climate, topography and other
relevant information.

Ideally, we would prefer to use training and test data
derived fromin-situ observations, aerial photography, or even
manually classified Landsat data. Indeed, efforts are currently
underway to compile a global database of site data that will be
used to produce and assess the land cover maps produced from
MODIS data. Unfortunately, these data are not yet available.
We have therefore relied on the IGBP map produced at EDC
under the assumption that it represents the best available
source of this type of data. Using the EDC IGBP database,
a random sample of 5545 joint observations of NDVI data
and associated IGBP class values were extracted and used
for the analyses presented here. The IGBP classification and
the frequency distribution of IGBP classes within the random
sample is presented in Table I.

The second data set we examine is composed of a time
series of AVHRR NDVI measurements collected at monthly
time intervals during 1987. These data were extracted from

TABLE II
NDVI-1 DEGREE GLOBAL LAND COVER CLASSES

(N = NUMBER OF SAMPLES IN EACH CLASS)

a global dataset compiled as part of the International Land
Surface Climatology Project (ISLSCP) Initiative I CDROM
[17], and include one maximum value NDVI composite value
for each month of 1987. For details, the reader is referred to
[13]. The specific training data and associated class labels were
compiled by DeFries and Townshend [4]. These observations
and labels include 3398 1 1 locations where three widely
used maps of land cover and vegetation [16], [20], [31] are in
agreement. The classification scheme used to label these data
and their associated class frequency distribution is presented
in Table II.

It is important to note that both sets of NDVI data include
finite levels of noise associated with the process used to
composite the data at monthly time steps [10]. A variety of
work has examined these issues [8], [13], [30]. In particular,
Myneni [19] provides a systematic analysis of the combined
effects of the atmosphere and surface bidirectional reflectance
on NDVI measurements collected from satellites. Further,
cloud contamination, large solar zenith angles, bias in view
zenith angles, and registration errors in the monthly AVHRR
composite data all contribute noise to these data [32]. For the
purposes of classification using decision trees, the key issue
is whether or not the noise is systematic and of sufficient
magnitude to cause confusion between classes. For this work
we assume that this is not the case based on the success of
previous work in classifying land cover from monthly com-
posites of AVHRR data (e.g., [4]). Complete details regarding
the processing techniques used to generate each of the data
sets used here are provided in [4], [13], [32], [14].

V. RESULTS

The questions examined in this paper are addressed by
comparing classification accuracies achieved using different
feature sets and boosted versus unboosted decision trees. To
provide the most realistic and robust estimates of classifier
performance, we performed a ten-fold cross validation for each
classification case considered. To do this, the data were ran-
domly partitioned into ten equal sized subsets, ensuring that the
class distribution of the entire dataset was maintained in each.
For each run, one subset was held out, using the nine remaining
subsets for training and pruning. The reserved subset was then
used to estimate the predicted classification accuracy of the
decision tree for unseen data, thereby ensuring that our training
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Fig. 2. Cross validated classification accuracies for decision trees estimated using different input features for the 1� global data set. Results for unboosted
and boosted trees are plotted in light and dark shades, respectively. (N = NDVI alone; P= phenological metrics alone; N+ P = NDVI and phenologic
metrics; N+ G = NDVI and geographic position; P+ G = phenologic metrics and geographic position; ALL= all input features used.)

and testing data sets were independent for each run. Six input
feature data sets were generated using different combinations
of input features: NDVI only, phenologic metrics only, NDVI
and phenological metrics, NDVI and geographic position,
phenologic metrics and geographical position, and NDVI and
phenological metrics and geographic position. Classification
trees were generated with and without boosting using C5.0.
Values for classification accuracies presented below represent
average values across the ten cross validation runs. Results
from each of our classification exercises are summarized in
Table III.

A. Boosting

Classification accuracies for decision trees estimated from
the 1 global data are shown in Fig. 2, and for the 1 km North
America data in Fig. 3. Cross validated classification accura-
cies from unboosted trees are plotted in the lighter shaded
bars and accuracies produced by boosted trees are plotted
in the darker shaded bars. These results show that boosting
improves classification accuracies for most of the cases tested.
Three exceptions to this pattern are noted. Specifically, for
the feature set composed of phenologic metrics alone (both 1
km and 1 data) and the feature set composed of all possible
features (1 km data only), boosting resulted in slightly lower
accuracies.

It is interesting to note that the improvement yielded by
boosting is not consistent between the 1and 1 km data sets.
For the 1 km data, improvements were generally on the order
of 7–9% (excluding the case composed of all features). For
the 1 data, on the other hand, boosting tended to improve
classification accuracy by about 4%. However, it is important
to note these improvements in classification accuracy account

TABLE III
SUMMARY OF RESULTS FROMBOOSTED AND UNBOOSTED DECISION TREES.
NOTE: NO VALUES (*) ARE PROVIDED FOR THE NUMBER OF NODES FOR

BOOSTED CLASSIFICATION BECAUSE THESE CLASSIFICATIONS ARE ESTIMATED

FROM MULTIPLE DECISION TREES WITH DIFFERING NUMBERS OF NODES

for anywhere from 20–50% of the misclassified samples
(i.e., 20–50% of misclassified training observations from
unboosted decision trees are correctly classified by the boosted
trees). Further, the overall improvement gained from using
the best feature set in association with boosting improved
classification accuracies from 78.7–96.6% (1data) and from
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Fig. 3. Same as Fig. 2, but for the 1 km data for North America.

67.4–79.5% (1 km data) relative to unboosted classifications
estimated from NDVI data alone. Stated another way, the use
of all available input features in association with boosting re-
duced misclassification rates by 84 and 37% for the global and
North America data sets, respectively, relative to unboosted
trees estimated from NDVI data only.

The boosted decision tree classifications were estimated
using ten iterations of the decision tree algorithm. We choose
to use ten iterations because previous studies using nonremote
sensing data sets suggest that this number of iterations provides
maximum improvement in classification accuracy and that
little is gained by performing additional boosting runs [5]. To
test this guideline, we estimated boosted classification trees
using the full feature space for both data sets and varied
the number of boosting iterations from two to 15. Results
from this analysis are presented in Fig. 4 (Note the use of
different scales on the -axes). These results confirm that the
accuracy improvement achieved through boosting approaches
an asymptotic value after a relatively few number of iterations.
Indeed, the results presented here suggest that relatively little
accuracy is gained beyond about seven iterations.

B. Feature Selection

Patterns in classification accuracy among the different fea-
ture sets were generally consistent between unboosted and
boosted trees, but clear differences are observed between
boosted and unboosted results for each feature set. For the 1
global data set, decision trees estimated using different com-
binations of input features not including geographic position
produced comparable accuracies. In comparison, classification
trees estimated from feature sets that include geographic
location show considerably ( 14–18%) higher accuracies.
Classifications estimated using only phenological metrics pro-
duced comparable accuracies to those estimated from the full

Fig. 4. Cross validated classification accuracies for boosted decision trees
for varying numbers of boosting iterations.

12 month time series, but combining these two feature sets
yielded no improvement in classification accuracy.

For the 1 km data, differences in classification results
produced among the different input features are more subtle.
In contrast to the 1global data, classification trees estimated
from phenological metrics produced accuracies that were
lower than those estimated from the full twelve month time
series. Further, the use of geographic position provided less
improvement relative to those achieved in the 1global data.

Overall, the highest classification accuracies were produced
using a combination of phenology and position for the 1
data, and a combination of the original twelve month NDVI
data set and geographic position for the 1 km data set.
The fact that phenology provides quite poor results for the
1 km data suggests that subtle information in the twelve
month data is not present in the phenological metrics and
is required to provide the highest accuracy. Also, note that
a by-product of improved classification accuracy produced
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Fig. 5. Map of global vegetation produced from the decision tree estimated using all input features at 1� spatial resolution.

by including geographic position as an input feature is that
tree complexity tends to decrease with classification accuracy
(Table III). Indeed, the number of nodes in a tree is a good
indicator of the predictive power of the input features provided
to a decision tree estimation algorithm. Therefore, in addition
to being more accurate, decision trees estimated using features
with high discrimination among the classes are more compact
and accurate than trees estimated from features with less
predictive power.

VI. CONCLUSION

The general objective of the work described here is to assess
two strategies designed to maximize land cover classification
accuracies derived from supervised classification algorithms
being developed for use with MODIS data. The specific
objectives are to improve our understanding of how supervised
classification algorithms interact with training data, and what
the impact of these interactions is on the final map produced
by classification of coarse spatial resolution remote sensing
data. Because MODIS will provide data that are superior to
AVHRR in terms of radiometric quality, geometric integrity,
and spectral resolution, we expect accuracies derived from
classifications based on MODIS data to improve accordingly.
However, improved understanding of the utility of currently
available input features as well as careful accounting for
artifacts introduced by training site selection are required to
provide the best product possible.

The results presented in this paper suggest several main
conclusions. First, boosting improved the classification accu-
racy for nine of the twelve input feature data set combinations
examined. The improvement was substantial in many cases,

and dramatic in some. We therefore conclude that boosting is
a useful technique and should be used for land cover classifi-
cation problems using remotely sensed data at continental to
global scales.

Second, adding features related to vegetation phenology
produced little improvement to classification accuracy. This
result is somewhat at odds with the conclusions of DeFries
et al. [2] who found that phenological metrics provide useful
information to classifications performed using data compiled
at global scales. DeFrieset al. [2] used maximum likelihood
techniques, however, which are better suited for use with
summarizing variables such as phenological metrics (which
tend to be more Guassian and less noisy than the NDVI data
from which they are derived). More recent work using the
decision tree classification algorithm in Splus (based upon the
CART model [1]) also supports the use of phenological metrics
[3]. The likely explanation for the apparent contradiction
between the results cited in [2], [3] and those presented
here is that developments in decision tree algorithms since
CART have produced algorithms that are superior in terms
of their ability to handle noise and perform feature selection.
Indeed, the fact that the decision tree classification accuracies
presented in this work show no improvement with the addition
of phenological metrics suggests that the useful information
provided in the phenological metrics is being extracted by the
trees from the original NDVI data.

Third, for the data sets examined here, the use of geographic
position provides substantial predictive power to the decision
tree classification algorithms. As we indicated in Section IV-
A, this result can be largely explained in terms of climate
control on the large scale distribution of global vegetation.
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Fig. 6. Map of training sites used to produce the decision tree at 1� spatial resolution.

Stated another way, it is not surprising that geographic position
has relatively high predictive power when classifying fairly
coarse classes of vegetation at continental and global scales.
This effect is particularly evident in the 1data for which
geographic position increases classification accuracies by more
than 13%.

Despite this encouraging result, a word of caution is in
order. To illustrate, Fig. 5 presents a map of global vegetation
generated using the decision tree estimated from all available
features using the 1data set. The cross validated classification
accuracy for the training data for this input feature set was
96.1%. However, visual inspection of this map shows distinct
latitudinal banding in eastern North America and Eurasia at
roughly 50 north that is clearly a by-product of interaction
between the geographic location of the training data and
the classification procedure. In North America, evergreen
coniferous forests are almost completely absent in the western
mountain regions of the United States (replaced by grassland
and agriculture classes), and deciduous and conifer forests
of the southern and eastern United States have been labeled
as cultivated. Further inspection reveals a variety of other
problems.

These observations clearly show that the cross validated
estimate of classification accuracy for these data is spurious.
In particular, this result seems to be produced by interaction
between the decision tree estimation algorithm and the distri-
bution of the training data sites (Fig. 6). Because the decision
tree attempts to optimize classification accuracy with respect
to the training data provided, over- or underrepresentation
of specific classes within geographic subregions introduces
substantial bias to classifications using geographic position as

an input feature. Stated another way, because the training data
are not distributed evenly within the geographic space of each
class, a classification based partly on geographic coordinates
proves to be very effective for classifying the training data.
Unfortunately, these accuracies do not reflect the true accuracy
of the final map produced from the decision trees estimated
from these data.

In contrast, the geographic distribution of sample points
in the 1 km North America data is random (i.e., evenly
distributed geographically) and the improvement in classifica-
tion accuracies yielded by inclusion of geographic position is
substantially smaller relative to that produced for the 1global
data set. Therefore, the improvement in classification accuracy
achieved by inclusion of geographic features in this data set
is probably more representative of the true predictive utility
of these features. An important conclusion from these results
is therefore that geographic position should only be used as
a secondary input feature used to discriminate between land
cover classes that are spectrally similar, but geographically
distinct.

From a more general perspective, it is clear that the classi-
fication results produced by supervised algorithms are heavily
reliant on the quality and representativeness of the training
data used. Thus, care must be used in interpreting estimated
classification accuracies from remote sensing derived maps
at continental to global scales, and that by extension, geo-
graphically and spectrally representative training data are a
key requirement to the success of supervised classification
algorithms planned for use with MODIS data. Indeed, probably
the most important factor influencing the quality of land cover
maps produced from MODIS data will be the quality of the
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training data used. To this end, the compilation of extensive
and high quality training data are a current focus of our efforts.
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